在Microsoft Sway中查看
主要功能
测量光合作用、蒸腾作用、呼吸作用、叶绿素荧光(可选)
气体交换和荧光参数的光响应曲线和 CO2 响应曲线
同步测量 CO2 气体交换与其它光合指标
测量参数
净光合速率,呼吸速率,蒸腾速率,气孔导度,胞间二氧化碳浓度,叶绿素荧光参数(可选)等
应用领域
植物生理、植物生态、农学、林学、园艺学等。
全方位的PAR测量设计
GFS-3000 系统具备全方位的 PAR 测量设计:三个 PAR 传感器(下图红圈部分),分别测量环境 PAR,叶室内部叶片正面 PAR,以及叶室内部叶片背面 PAR。本设计的优点在于不会忽略叶片背面的光合作用测量。
![]() | ![]() |
全方位的温度测量设计
独特的四温度测量设计:
Tleaf:热电偶,测量叶片温度
Tcuv:Pt-100 热敏电阻,测量叶室温度
Tamb:Pt-100 热敏电阻,测量环境温度
Ttop:Pt-100 热敏电阻,测量叶室上部温度
![]() |
多种叶室可供选择
GFS-3000 标准叶室的设计允许快速、简便的更换各种满足特殊需要的叶室。红蓝 LED 光源 3040-L 可与所有叶室连接使用。
标准叶室
适合多数叶片,标准测量面积 8 cm2,可更换配件满足 1~12.5 cm2 的测量面积。
![]() | ![]() |
柱状叶室
适合地衣、苔藓、土壤样品和小动物等。
![]() | ![]() |
针叶叶室
适合各种针叶植物叶片或小枝条。
![]() | ![]() |
拟南芥植株叶室
大容积,可放进(盆)直径 55 cm~70 mm 的盆栽拟南芥或其它小植株。
![]() | ![]() |
同步测量植物 CO2 气体交换与其它光合指标的解决方案
光合作用是地球上重要的化学反应之一,是整个生物圈物质循环与能量流动的基础。测量生物的光合作用一直是科研界的热点。
传统的光合作用测量主要包括调制叶绿素荧光(PAM 技术)、CO2 气体交换和光合放氧三大技术,几十年来在国际科研界均得到了广泛应用。由于调制叶绿素荧光和 CO2 气体交换都可以做到无损、原位、活体测量,对同一个样品可以进行长期的胁迫处理研究(光合放氧需要破碎叶片),因此应用更广泛一些。
此外,还有一种差式吸收技术,可以通过测量光合组分在氧化还原(或加亚基、去亚基)过程中的差式吸收来反映他们的活性。如通过测量光系统 I 反应中心叶绿素 P700 的差式吸收来测量光系统I的活性(DUAL-PAM-100),通过测量 P515/535 的差式吸收来测量跨膜质子梯度 ΔpH 和玉米黄素(Zea)的变化(DUAL-PAM-100 的 P515/535 模块),通过测量 500-570 nm 的差式吸收来测量 C550、Cyt b559、Cyt b563、Cyt c556、Cyt c6、Cyt f 等的活性变化(KLAS-100)。这种技术信号弱、难度高,但也具有无损、原位、活体测量的特点。随着双通道 PAM-100 测量系统 DUAL-PAM-100 的大规模商业化生产,差式吸收技术已在国际光合作用学界得到广泛应用。
更加可喜的是,可以同步测量 C550、Cyt b559、Cyt b563、Cyt c556、Cyt c6、Cyt f、P515、Scatt(散射信号)、Zea(玉米黄素)等活性的动态 LED 阵列差示吸收光谱仪 KLAS-100 也已研发成功,大大拓展了差示吸收技术在光合作用研究领域的应用。
除了利用上述几种技术进行单独测量外,从上世纪 80 年代后期,逐渐开始了两种技术的同步测量,如同步测量调制叶绿素荧光与 CO2 气体交换、同步测量调制叶绿素荧光与光合放氧等。
随着技术的进步,有越来越多的指标可以同步测量,而且即使是两种指标的同步测量(如调制叶绿素荧光与 CO2 气体交换),也可以有多种测量模式可供选择。
德国 WALZ 公司拥有 CO2 气体交换、调制叶绿素荧光和差式吸收三种核心技术。为了方便广大科研工作者更深入的了解各种光合作用的同步测量技术,泽泉生态开放实验室(Zealquest Laboratory for Ecological Research)总结出了一套 CO2 气体交换与其它光合指标的同步测量解决方案,希望能为相关单位提供参考。
方案功能与设备
![]() |
CO2 气体交换与调制叶绿素荧光、差式吸收等技术的同步测量,有很多模式可供选择。下面将根据技术难度从低到高的顺序,分 5 方面进行介绍。
同步测量一:同步测量 CO2 气体交换与叶绿素荧光
CO2气体交换与叶绿素荧光的同步测量,主要有以下几种模式:
![]() | ![]() | |
模式一(GFS-3000/FL):便携式光合仪 GFS-3000 连接荧光附件 3057-FL,在仪器提供的人工光下同步测量气体交换与叶绿素荧光。3057-FL 不能单独使用。 | 模式二(GFS-3000/F):便携式光合仪 GFS-3000 连接荧光附件 3050-F,在自然光下或人工光下同步测量气体交换与叶绿素荧光。3050-F 不能单独使用。 | |
| | |
![]() | ![]() | |
模式三(GFS-3000/M):便携式光合仪 GFS-3000 连接超便携式调制荧光仪 MINI-PAM,在自然光下或人工光下同步测量气体交换与叶绿素荧光。MINI-PAM 可单独使用。 | 模式四(GFS-3000/J):便携式光合仪 GFS-3000 连接基础型调制荧光仪 JUNIOR-PAM,在自然光下或人工光下同步测量气体交换与叶绿素荧光。JUNIOR-PAM 可单独使用。 |
上述 4 种模式可以根据需要灵活选择,特别是模式三,既可同步测量,也可分开测量。由于光合仪比较沉重,在许多条件苛刻的场合就可以携带极便携的 MINI-PAM 进行测量。
同步测量二:同步测量 CO2 气体交换与叶绿素荧光成像
CO2 气体交换与叶绿素荧光成像的同步测量,主要有一下几种模式【技术文献见“代表文献”部分】。
模式一:与 MINI-IMAGING-PAM 联用 测量面积 2 x 3.2 cm | 模式二:与 MAXI-IMAGING-PAM 联用 测量面积 10 x 13 cm | |
![]() | ![]() | |
GFS-3000/IM-MINI 连接标准测量叶室,适合大多数样品测量。 | ||
| ||
![]() | ||
GFS-3000/IM-MINI-Arabidopsis 连接拟南芥整株叶室,适合小植株的整株测量。 | GFS-3000/IM-MAXI 连接特制大叶室,适合大型叶片的测量。 |
由于 M 系列 IMAGING-PAM 可以共用一个主机分别连接多个测量面积不同的探头(MAXI-,MINI-,MICROSCOPY-),而 GFS-3000 又有多种叶室可供选择,这就极大丰富了同步测量 CO2 气体交换与叶绿素荧光成像的模式。如分别与 IMAGING-PAM 的 MAXI- 和 MINI- 探头连接,就可在不同的测量面积上同步测量。另外,与拟南芥整株叶室结合,就可测量小植株的整株气体交换和荧光成像。
GFS-3000 设计的一个重要特点就是,标准叶室、柱状叶室、针叶/簇状叶室、拟南芥整株叶室的上表面是相同的,都可以与 MINI-IMAGING-PAM 结合使用,更进一步扩大了同步测量的应用范围。
![]() |
同步测量三:同步测量 CO2 气体交换、P700 与叶绿素荧光
光合仪 GFS-3000 与 DUAL-PAM-100 测量系统联用,完美实现了气体交换、叶绿素荧光与差式吸收同步测量。同步测量 CO2 气体交换与 叶绿素荧光和P700 。
系统组成
![]() | ![]() | ![]() |
DUAL-PAM-100 | 3010-DUAL | GFS-3000 |
![]() | ||
GFS-DUAL |
主要功能
同步测量 P700、叶绿素荧光与气体交换
同步测量 P700、叶绿素荧光与气体交换的暗-光诱导曲线
同步测量 P700、叶绿素荧光与气体交换的光响应曲线和 CO2 响应曲线
典型的气体交换测量,如光合作用、蒸腾作用、呼吸作用
典型的叶绿素荧光测量,如诱导曲线、快速光曲线、淬灭分析、暗驰豫等
典型的 P700 曲线测量
叶绿素荧光与 P700 的快速诱导动力学等
编程进行复杂的同步或独立测量
测量参数
PS II 参数:Fo, Fm, F, Fm’, Fv/Fm, Y(II), Fo’, qP, qL, qN, NPQ, Y(NPQ), Y(NO) 和 ETR(II) 等
PS I 参数:P700, Pm, Pm’, P700red, Y(I), Y(ND), Y(NA) 和 ETR(I) 等
气体交换参数:参比室和样品室的 CO2 绝对值(CO2abs,CO2sam),参比室和样品室的 H2O 绝对值(H2Oabs,H2Osam),流速(gas flow),环境气压(Pamb),叶室温度(Tcuv),叶片温度(Tleaf),环境温度(Tamb),环境 PAR(PARamb),叶室内叶片正面 PAR(PARtop),叶室内叶片背面 PAR(PARbot),叶室相对湿度(rH),蒸腾速率(E),水气压饱和亏(VPD),叶片气孔导度(GH2O),净光合速率(A),胞间 CO2 浓度(Ci),环境 CO2 浓度(Ca),植物水分利用效率,CO2 响应曲线,光响应曲线等
DUAL-PAM 气体交换叶室——3010-DUAL
![]() | ![]() |
3010-DUAL | 3010-DUAL 与 DUAL-PAM-100 的测量头连接 |
专为 DUAL-PAM-100 与 GFS-3000 的同步测量设计,由特制叶室(带温度和 PAR 传感器)、风扇、导光杆、电子盒与支架构成。同步测量时,光源完全由 DUAL-PAM-100 的测量头提供,气体交换由 GFS-3000 的红外分析器检测,P700和叶绿素荧光由 DUAL-PAM-100 的检测器测量。
需要注意的是,3010-DUAL 可以连接 DUAL-PAM-100 的 DUAL-DB 测量头,但不能连接 DUAL-DR 测量头。DUAL-DR 的光学单元太复杂,连接 3010-DUAL 容易损伤 DUAL-DR。
测量实例
下面的两个图是以洋常春藤(Hedera helix)为材料,利用本系统同步测量的 P700、叶绿素荧光和气体交换的诱导曲线。
![]() |
洋常春藤(Hedera helix)的 P700(蓝色)和叶绿素荧光(红色)的诱导曲线 |
![]() |
洋常春藤(Hedera helix)的净光合速率(红色)和气孔导度(蓝色)的诱导曲线 |
同步测量四:同步测量 CO2 气体交换与跨膜质子动力势(pmf)、跨膜质子梯度(ΔpH) 、跨膜电位(ΔΨ)和玉米黄素(Zea)
P515/535 模块是 WALZ 公司为 DUAL-PAM-100 设计的测量模块,可以直接连接 DUAL-PAM-100 的主机,测量 550-510 nm 的差式吸收以及 535 nm 波长的信号变化。P515/535 模块可以测量光合器官的跨膜质子动力势(pmf)、跨膜电位(Δψ)、跨膜质子梯度(ΔpH)和玉米黄素(Zea)变化等内容。此外,该模块还提供一种特殊的 “P515 Flux” 操作模式,可让光化光以光-暗脉冲形式打开-关闭(1/1调制光/暗),原位测量活体样品处于稳态的偶联电子和质子的流动速率。
GFS-3000 通过专用气体交换叶室 3010-DUAL 与 DUAL-PAM-100 以及 P515/535 模块联用后,做到了同步测量 CO2 气体交换与跨膜质子动力势(pmf)、跨膜质子梯度(ΔpH) 、跨膜电位(ΔΨ)和玉米黄素(Zea)。由于 ΔpH 和 Zea 都与叶黄素循环密切相关,而叶黄素循环是植物光保护的重要调节机制,再结合气体交换指标反映的 Calvin 循环状况,就可以非常深入的对植物光保护调节机制进行研究。
![]() | ||
![]() | ![]() | ![]() |
DUAL-PAM-100 P515/535 与 GFS-3000 联用 |
同步测量五:同步测量 CO2 气体交换与 C550、Cyt b559、Cyt b563、Cyt c556、Cyt c6、Cyt f、P515、Scatt(散射信号)、Zea(玉米黄素)
传统的差式吸收技术每次只能测量一个组分的差式吸收变化,而光合机构特别复杂,很多组分是偶联在一起发挥作用的,几种组分分开测量的结果难以完美表征它们在偶联的功能体下的实际作用机制。
Schreiber 教授花费 20 年时间研制的动态 LED 阵列差式吸收光谱仪 KLAS-100 完美的解决了上述缺陷。它采用 500-570 nm的差示吸收光谱技术来同步测量光合膜上 C550、Cyt b559、Cyt b563、Cyt c556、Cyt c6、Cyt f、P515、Scatt(散射信号)、Zea(玉米黄素)等8种组分的氧化还原变化。
著名的 DUAL-PAM-100 测量系统只有两个测量通道,而 KLAS-100 有 10 个测量通道。因此,1 台 KLAS-100 相当于 5 台 DUAL-PAM-100 的功能。
GFS-3000 通过 3010-DUAL 专用气体交换叶室与 KLAS-100 联用后,做到了同步测量 CO2 气体交换与 C550、Cyt b559、Cyt b563、Cyt c556、Cyt c6、Cyt f、P515、Scatt(散射信号)、Zea(玉米黄素)。
这些测量指标结合在一起,可以进行非常复杂的、前人未做过的深入研究。KLAS-100 是刚刚发展成熟的一种技术,在著名的《Plant Physiology》上发表了两篇文献。
![]() |
KLAS-100 |
同步测量技术选购指南
利用 GFS-3000 与其它技术(调制叶绿素荧光、差式吸收)的联用,可以实现多种光合指标的同步测量,利用无损、原位、活体的测量进行非常复杂、深入的机理性研究。下表是实现这些测量功能的选购指南:
![]() |
产地:德国 WALZ
代表文献
数据来源:光合作用文献 Endnote 数据库
原始数据来源:Google Scholar
1. Abiola, Y. O., et al. (2025). "Contrasting leaf structural, photosynthetic and allocation responses to elevated [CO2] in different-aged leaves of tropical fruit trees Persea americana and Annona muricata." Plant Physiology and Biochemistry: 109842.
2. Ansari, R., et al. (2025). "Photosynthetic efficiency and chlorophyll fluorescence responses of Viola ignobilis Rupr. subjected to different biostimulants and two light intensities." Journal of Horticulture and Postharvest Research: 213-228.
3. Bacalu-Rus, D., et al. (2025). "The Influence of Heavy Metals Contained in Sludge Used as Fertilizer for the Dahlia Variabilis Plant on Photosynthetic Traits." WSEAS Transactions on Environment and Development 21: 417-425.
4. Barboza, L. (2025). "Physiological Impacts of Bemisia Tabaci MEAM1 Infestation on Soybean Cultivars with Different Levels of Resistance." J Environ Pollut 1(1): 01-09.
5. Brodsky, V., et al. (2025). "Acclimation of carbon metabolism to a changing environment across a leaf rosette of Arabidopsis thaliana." Plant Stress: 100958.
6. Castillo, C., et al. (2025). "In vivo transformations of positively charged nanoparticles alter the formation and function of RuBisCO photosynthetic protein corona." Nature Nanotechnology.
7. Chavan, S. B., et al. (2025). "Optimizing tree shade gradients in Emblica officinalis-based agroforestry systems: impacts on soybean physio-biochemical traits and yield under degraded soils." Agroforestry systems 99(1): 21.
8. Contreras-Serrano, M., et al. (2025). "Increased Growth Temperatures Alter Arctic Plant Responses to Heat Wave and Drought." Global change biology 31(4): e70187.
9. Copaciu, F., et al. (2025). "Enhancing UV-B Protection and Abiotic Stress Tolerance in Tomato Plants: The Role of Silicon Nanoparticles in Photosynthetic Parameters, Pigments, and Secondary Metabolite Production." Plants 14(16): 2599.
10. D’Angieri, M., et al. (2025). "Sulfur supply and ammonium toxicity affect photosynthesis and plant nutrition in Tanzania guinea grass." Theoretical and Experimental Plant Physiology 37(1): 39.
11. de Farias, R. M., et al. (2025). "Physiology, biochemistry and yield of melon in a semi-arid region with the application of biostimulants1." Brazilian Journal of Agricultural and Environmental Engineering 29(1): e283055.
12. Diao, H., et al. (2025). "Contrasting photosynthetic, stomatal and mesophyll mechanisms drive common reductions in leaf water-use efficiency under blue light." Journal of Experimental Botany.
13. Dziubek, D., et al. (2025). "Dissection of photosynthetic short and long-term acclimation to fluctuating light reveals specific functions within the chloroplast thioredoxin network." Journal of Experimental Botany.
14. Fan, B., et al. (2025). "Different water and photosynthetic resource use strategies explain the widespread distribution of Dasiphora fruticosa in Qinghai-Tibet Plateau alpine meadows." Environmental and Experimental Botany 231: 106106.
15. Fateminia, F., et al. (2025). "Effects of gamma-aminobutyric acid, melatonin, and potassium phosphite on the growth and photosynthetic efficiency of Citrus aurantium L. seedling." Journal of Plant Process and Function 13(64): 49-60.
16. Gómez-Gallego, M., et al. (2025). "Light Limitation and Foliar Pathogenic Infection Impact Phloem Anatomy and Function in Pinus radiata D. Don." Plant, Cell & Environment n/a(n/a).
17. Gu, L., et al. (2025). "Regulatory Coordination of Photophysical, Photochemical, and Biochemical Reactions in the Photosynthesis of Land Plants." Plant Direct 9(5): e70080.
18. Guo, L., et al. (2025). "Salt-alkali-tolerant growth-promoting Streptomyces sp. Jrh8-9 enhances alfalfa growth and resilience under saline-alkali stress through integrated modulation of photosynthesis, antioxidant defense, and hormone signaling." Microbiological Research 296: 128158.
19. Hartwig, R. P., et al. (2025). "Drought response of the maize plant-soil-microbiome system is influenced by plant size and presence of root hairs." Annals of Botany.
20. Jia, Y., et al. (2025). "Endophytic fungi enhance drought tolerance in Fagopyrum tataricum: Insights into flavonoid biosynthesis and photosynthetic pathways." Agricultural Water Management 313: 109496.
21. Jiang, J., et al. (2025). "Livestock and poultry manure influence thallium accumulation in chili peppers (Capsicum annuum) under complex toxic elements contamination in soil." Journal of hazardous materials 482: 136605.
22. Kang, J., et al. (2025). "TAC-C uncovers open chromatin interaction in crops and SPL-mediated photosynthesis regulation." Science Advances 11(22): eadu6565.
23. Khan, A., et al. (2025). "Mitochondria-mediated retrograde responses evoked by inhibitor antimycin A and mtDNA elimination in Chlamydomonas reinhardtii." International Journal of Biological Macromolecules: 144690.
24. Lehr, P. P., et al. (2025). "Guard Cell-Specific Metabolic Responses to Drought Stress in Maize." Journal of Agronomy and Crop Science 211(2): e70049.
25. Lehr, P. P., et al. (2025). "Sulfate enhances metabolic acclimation under drought stress – a comparative study of grapevine and maize." Plant Stress: 100938.
26. Li, Q., et al. (2025). "Correlation Analysis of Twig and Leaf Characteristics and Leaf Thermal Dissipation of Hippophae rhamnoides in the Riparian Zone of the Taohe River in Gansu Province, China." Plants 14(2): 282.
27. Li, Y., et al. (2025). "Impacts of non-steroidal anti-inflammatory drugs on Phragmites australis root exudation throughout plant life cycle: Defense responses and phytoremediation potential." Journal of Environmental Sciences.
28. Li, Z., et al. (2025). "Continuous Cropping Duration Alters Green Pepper Root Exudate Composition and Triggers Rhizosphere Feedback Inhibition." Agronomy 15(8): 2010.
29. Lima, J. V. L., et al. (2025). "Synergistic Effect of Exogenous Application of Proline and Boric Acid on the Growth, Physiological Aspects, and Postharvest Quality of Radish under Salt Stress." ACS Omega.
30. Lima, V. F., et al. (2025). "The fern Nephrolepis exaltata is largely unresponsive to climate change conditions at both physiological and metabolic levels." The Plant Journal 123(3): e70397.
31. Lin, S., et al. (2025). "Hydrogen sulfide improves photosynthetic efficiency by regulating light energy dissipation and reversible phosphorylation of thylakoid proteins in rice under salt stress." Plant Physiology and Biochemistry: 109908.32. Liu, J., et al. (2025). "Anthocyanins promote the abundance of endophytic lactic acid bacteria by reducing ROS in Medicago truncatula." The Plant Journal 122(1): e70127.
33. Liu, W., et al. (2025). "The role of the sucrose synthase gene in promoting thorn occurrence and vegetative growth in Lycium ruthenicum." Plant Molecular Biology 115(1): 30.
34. Luo, Y., et al. (2025). "Effect of the fungal endophyte Epichloë sinensis on the physiology of different Festuca sinensis ecotypes under salt-alkaline treatment." Plant and Soil.
35. Ma, X., et al. (2025). "Influences of environmental and leaf functional traits variations on photosynthetic characteristics of Cotoneaster multiflorus in Xinglong Mountain." Frontiers in Plant Science Volume 16 - 2025.
36. Mao, H.-T., et al. (2025). "Chlorophyll b is essential for the growth, photoprotection, and photosystem I assembly in wheat." The Plant Journal 123(4): e70442.
37. Marcelino, R. M. d. S., et al. (2025). "Salicylic acid mitigates damage caused by water deficit in forage sorghum1." Brazilian Journal of Agricultural and Environmental Engineering 29(3): e286824.
38. Márquez, D., et al. (2025). "Navigating Challenges in Interpreting Plant Physiology Responses through Gas Exchange Results in Stressed Plants." Plant Ecophysiology.
39. Ormond, A., et al. (2025). "The trade-off between photosynthetic rate and thallus moisture-demand explains lichen habitat association with the temperate rainforest." Oecologia 207(3): 48.
40. Osipova, S. V., et al. (2025). "Drought tolerance of the photosynthetic apparatus of bread wheat (Triticum aestivum L.) lines with introgressions in chromosome 2D from Aegilops tauschii Coss." Vavilovskii Zhurnal Genet Selektsii 29(4): 530-538.
41. Pappert, I., et al. (2025). "Effects of high light intensity and spectral variability on maize photosynthesis and growth." Frontiers in Plant Science 16.
42. Perez, R., et al. (2025). "A Comprehensive Database of Leaf Temperature, Water, and CO 2 Fluxes in Young Oil Palm Plants Across Diverse Climate Scenarios."
43. Qu, Y., et al. (2025). "Identification and characterization of compounds that improve plant photosynthesis and growth under light stress conditions." Communications Biology 8(1): 300.
44. Schober, T., et al. (2025). "The effects of plant density and duration of vegetative growth phase on agronomic traits of medicinal cannabis (Cannabis sativa L.): A regression analysis." PLoS ONE 19(12): e0315951.
45. Schuler, P., et al. (2025). "PANDA: A simple and affordable chamber system for measuring the whole-plant net CO2 flux." bioRxiv: 2025.2006. 2002.657330.
46. Seydel, C., et al. (2025). "Subcellular plant carbohydrate metabolism under elevated temperature." Plant Physiology.
47. Shi, Q., et al. (2025). "Optimising Peanut Growth: Exogenous Calcium Enhances Photosynthesis in Phosphorus-Limited Environments." Plant, Cell & Environment n/a(n/a).
48. Silva, A. G. C. d., et al. (2025). "Methyl jasmonate as an attenuator of salt stress on the morphophysiological aspects of red rice." Rev. bras. eng. agríc. ambient 12(29).
49. Silva, A. G. C. d., et al. (2025). "Methyl jasmonate as an attenuator of salt stress on the morphophysiological aspects of red rice1." Brazilian Journal of Agricultural and Environmental Engineering.
50. Sommer, N., et al. (2025). "The potential of four legume trees for mercury phytoremediation and the role of arbuscular mycorrhizal fungi."
51. Takeuchi, K., et al. (2025). "PSII Photoinhibition as a Protective Strategy: Maintaining an Oxidative State of PSI by Suppressing PSII Activity Under Environmental Stress." Physiologia plantarum 177(4): e70392.
52. Thölix, L., et al. (2025). "Carbon sequestration in different urban vegetation types in Southern Finland." Biogeosciences 22(3): 725-749.
53. Trinh, M. D. L., et al. (2025). "Chloroplast envelope-localized DLDG1 modulates H+ translocation across thylakoid membranes via plastidial ATP synthase." Plant Physiology.
54. Wang, Y., et al. (2025). "Photosynthetic Characteristics and Leaf Structure of Yellow-leafed Lilium davidii Var. unicolor." HortScience 60(4): 587-600.
55. Wegher, M., et al. (2025). "Impact of leaf removal on recovery of young grapevines under heatwave conditions: A study in an ecotron environment." OENO One 59(3).
56. Wei, G., et al. (2025). "Chloride Application Enhances Photosynthesis and Facilitates Nitrate Translocation While Driving Chloride Translocation Into Roots." Food and Energy Security 14(3): e70095.
57. Wu, D., et al. (2025). "Supplementary Calcium Overcomes Nocturnal Chilling-Induced Carbon Source-Sink Limitations of Cyclic Electron Transport in Peanuts." Plant, Cell & Environment n/a(n/a).
58. Wu, R., et al. (2025). "Rhizophagus intraradices enhances soybean tolerance to soda saline-alkaline stress through coordinated regulation of ionic homeostasis and photosynthetic efficiency during critical growth stages." Plant Physiology and Biochemistry: 110382.
59. Wu, R., et al. (2025). "Rhizophagus irregularis combined with biochar enhances Cr tolerance in Ricinus communis by altering host plant's antioxidant and photosynthetic characteristics." Industrial Crops and Products 227: 120769.
60. Yongxing, Z., et al. (2025). "夹沙分层配土条件下紫花苜蓿的光合及蒸腾特性研究." Guan'gai Paishui Xuebao= Journal of Irrigation and Drainage 44(4): 47.
61. Zhang, X., et al. (2025). "Effects of litter layer alterations caused by increasing stand age on the seed germination and seedling establishment of Robinia pseudoacacia plantations." Forest Ecology and Management 594: 122960.
62. Zhang, Y.-L., et al. (2025). "Trees use exogenous sugars for growth, but excess triggers negative feedback reducing photosynthetic carbon gain." Tree physiology.